
Obtaining a Fuzzy Controller with High
Interpretability in Mobile Robots Navigation

Manuel Mucientes
Dept. Electronics and Computer Science
University of Santiago de Compostela

Spain, E-15782
E-mail: manuel@dec.usc.es

Jorge Casillas
Dept. Computer Science and Artificial Intelligence

University of Granada
Spain, E-18071

E-mail: casillas@decsai.ugr.es

Abstract— The paper presents the design of a fuzzy controller
for the wall-following behavior in mobile robotics using the COR
(Cooperative Rules) methodology with Ant Colony Optimization.
The system has been tested in several simulated environments
using the Nomad 200 robot software, and compared with other
controller based on genetic algorithms. The proposed approach
obtains a highly interpretable knowledge base in a reduced time,
and the designer only has to define the number of membership
functions and the universe of discourse of each variable.

I. I NTRODUCTION

The field of mobile robotics is characterized by the high
amount of uncertainty presented in real and unconstrained
environments. Furthermore, information provided by robot
sensors is noisy and unreliable. Fuzzy logic has shown to
be a useful tool when dealing with this uncertainty, and has
been widely used for the design of behaviors in robotics [1].
The design of Fuzzy Rule-Based Systems (FRBS) requires a
deep knowledge on the task to be controlled and forces to
spend long time tuning the controller [2]. Due to that, in the
last few years the use of learning methods for the design of
fuzzy controllers has been generalized. The main approaches
are evolutionary algorithms [3] and neural networks [4].

In this paper we present the design of a fuzzy controller
for the wall-following behavior in mobile robotics using the
COR (Cooperative Rules) methodology [5], [6]. The main
advantages of the proposed approach are the easiness in the
design, as only the number of membership functions and the
universe of discourse of each variable have to be defined. Other
advantages are the speed in the obtaining of the knowledge
base (due to the search space reduction) and its high degree
of interpretability. Finally, the use of a function that scores
the action of the controller over each of the examples of the
training set (which cover the universe of discourse of all the
variables) allows that the quality of the learned behavior does
not depend on the environment, and also that the robot will
be capable to face any situation.

The paper is organized as follows. Section II introduces the
wall-following behavior. Section III presents the methodology
that has been used. Section IV shows the obtained results and,
finally, conclusions are discussed.

II. L EARNING THE WALL -FOLLOWING BEHAVIOR

The wall-following behavior is usually implemented when
the robot is exploring an unknown area, or when it is moving
between two points in a map. A good wall-following controller
is characterized by three features: to maintain a suitable
distance from the wall that is being followed, to move at a
high velocity whenever possible, and finally to avoid sharp
movements, making smooth and progressive turns and changes
in velocity. The controller can be configured modifying the
values of two parameters: the reference distance, which is the
desired distance between the robot and the selected wall, and
the maximum velocity attainable by the robot. In what follows
we assume that the robot is going to follow a contour that is
on its right side. Of course, the robot could also follow the
left-hand wall, but this can be easily dealt with by simply
interchanging the sensorial inputs.

The input variables of the control system are the right-
hand distance (RD), the distances quotient (DQ), which is
calculated as:

DQ =
left− hand distance

RD
(1)

As it can be seen (Fig. 1),DQ shows the relative position of
the robot inside a corridor, which provides with information
that is more relevant to the problem than simply using the
left-hand distance. A high value forDQ means that the robot
is closer to the right-hand wall, whilst a low value indicates
that the closer wall is the left-hand one. The other input
variables are the linear velocity of the robot (LV) and the
orientation of the robot with respect to the wall it is following.
A positive value of the orientation indicates that the robot is
approaching to the wall, whilst a negative value means the
robot is moving away from the wall. The output variables are
the linear acceleration and the angular velocity.

All the information used to calculate distances and orien-
tations is obtained from the ultrasound sensors of the robot.
The distances and the orientation are obtained in two ways: if
any of the walls (left or right) can be modeled with a straight
line using a least square mean of the raw sensor data, then the
corresponding distance and orientation are measured from that
line. Otherwise, distance is measured as the minimum distance



of a set of sensors, and the orientation will be the orientation
of that sensor with respect to the advance direction.

Left-hand distance RD

Fig. 1. Description of some of the distances used to calculate input variables

A set of examples (23085) has been chosen for learning
the knowledge base. These examples cover the universe of
discourse of all the variables in the antecedent part of the rule.
The universes of discourse have been discretized, in order to
minimize the search space, with a step or granularitygn, where
n is the variable. FunctionSF , that scores the action of the
rule base over an example, is defined as:

SF
(
RB

(
el

))
=

1
α1 + α2 + α3 + 1

(2)

whereα1, α2, andα3 are respectively:

α1 = 100 · |RD − reference distance|
gRD

(3)

α2 = 10 · |maximumvelocity − LV |
gLV

(4)

α3 =
|orientation|
gorientation

(5)

and gRD, gLV , and gorientation are the granularities of the
respective input variables. The granularities are used in these
equations in order to evaluate the deviations of the values
of the variables from the desired ones in a relative manner
(the deviation of the value of variablen from the desired
one is measured in units ofgn). This makes possible the
comparison of the deviations of different variables and, as a
consequence, the assignment of the weights for each one of
the variables. These weights (100, 10 and 1 for (3), (4), and (5)
respectively) have been heuristically determined, and indicate
how much important the deviation in the value of a variable
is with respect to the deviation of other variables. The highest
weight has been assigned to the distance, as small variations
of RD with respect to the reference distance should be highly
penalized. An intermediate weight is associated to velocity
and, finally, the least important contribution to functionSF is
for the orientation of the robot.

The index that measures the global quality of the encoded
rule set is:

f(RB) =
1

2 ·NE

NE∑

l=1

{{
1− SF

(
RB

(
el

))

max (SF (el))

}
· ω

}2

(6)

whereNE is the number of examples,ω is a scaling factor
that has been set to 1000, andmax

(
SF

(
el

))
is the maximum

score that an action can obtain for exampleel. These values
are obtained before the beginning of the algorithm, trying and
scoring all the possible actions for each example.

III. L EARNING METHODOLOGY BASED ONCOR

The process followed to learn the fuzzy controller is based
on the COR methodology (proposed in [5] and extended
in [6]). We have selected this process due to its good properties
to quickly obtain knowledge bases with a high interpretability.
The three following subsections describe the learning method-
ology, an analysis of its main properties, and the proposed
algorithm based on it.

A. COR Methodology

A family of efficient and simple methods to derive fuzzy
rules guided by covering criteria of the data in the example
set, calledad hoc data-driven methods, has been proposed
in the literature in the last few years. Their simplicity, in
addition to their quickness and easy understanding, make
them very suitable for learning tasks. However, ad hoc data-
driven methods usually look for the fuzzy rules with the
best individual performance (e.g. [7]) and therefore the global
interaction among the rules of the rule base is not considered,
thus involving knowledge bases with a bad accuracy.

With the aim of addressing these drawbacks keeping the
interesting advantages of ad hoc data-driven methods, the
COR methodology is proposed [5]. Instead of selecting the
consequent with the highest performance in each subspace like
these methods usually do, the COR methodology considers the
possibility of using another consequent, different from the best
one, when it allows the FRBS to be more accurate thanks to
have a knowledge base with better cooperation.

COR consists of two stages:
1) Search space construction— It obtains a set of candi-

date consequents for each rule.
2) Selection of the most cooperative fuzzy rule set—

It performs a combinatorial search among these sets
looking for the combination of consequents with the best
global accuracy.

A wider description of the COR-based rule generation
process is shown in Fig. 2.

B. Advantages of the COR Methodology to Learn Fuzzy
Controllers in Mobile Robots Navigation

The above mentioned methodology has some interesting
advantages that make it very useful to learn fuzzy controllers
in mobile robots navigation. We can mainly highlight two
characteristics:

1) Search space reduction— The COR methodology re-
duces the search space basing on heuristic information.
This fact differences COR from other rule base learning
methods [8] and allows it to be quicker and to make a
better solution exploration. This is an important issue for
the learning of fuzzy controllers, where a high number
of examples is used. In the wall-following behavior
presented in this paper, 23085 examples have been used,
and the employed methodology spends only 20 minutes
in order to obtain the controller. As opposed to this,
a solution based on genetic algorithms with the same
number of examples could spent several hours.



Inputs :
• An input-output data set—E = {e1, . . . , el, . . . , eN}, with el =

(xl
1, . . . , xl

n, yl
1, . . . , yl

m), l ∈ {1, . . . , N}, N being the data set
size, and n (m) being the number of input (output) variables—
representing the behavior of the problem being solved.

• A fuzzy partition of the variable spaces. In our case, uniformly
distributed fuzzy sets are regarded. Let Ai be the set of
linguistic terms of the i-th input variable, with i ∈ {1, . . . , n},
and Bj be the set of linguistic terms of the j-th output variable,
with j ∈ {1, . . . , m}, with |Ai| (|Bj |) being the number of labels
of the i-th (j-th) input (output) variable.

Algorithm :
1) Search space construction:

1.1. Define the fuzzy input subspaces containing positive
examples: To do so, we should define the positive
example set (E+(Ss)) for each fuzzy input subspace
Ss = (As

1, . . . , As
i , . . . , As

n), with As
i ∈ Ai being a

label, s ∈ {1, . . . , NS}, and NS =
∏n

i=1 |Ai| being the
number of fuzzy input subspaces. In this paper, we use
the following:

E+(Ss) = { el ∈ E | ∀i ∈ {1, . . . , n},
∀A′i ∈ Ai, µAs

i
(xl

i) ≥ µA′i
(xl

i) }
(7)

with µAs
i
(·) being the membership function associated

with the label As
i .

Among all the NS possible fuzzy input subspaces,
consider only those containing at least one positive
example. To do so, the set of subspaces with positive
examples is defined as S+ = {Sh | E+(Sh) 6= ∅}.

1.2. Generate the set of candidate rules in each subspace
with positive examples: Firstly, the candidate conse-
quent set associated with each subspace containing at
least an example, Sh ∈ S+, is defined. In this paper, we
use the following:

C(Sh) = { (B
kh
1 , . . . , B

kh
m ) ∈ B1 × · · · × Bm |

∃el ∈ E+(Sh) where ∀j ∈ {1, . . . , m},
∀B′j ∈ Bj , µ

B
kh
j

(yl
j) ≥ µB′j

(yl
j) }.

(8)

Then, the candidate rule set for each subspace is de-
fined as CR(Sh) = {Rkh

= [IF X1 is Ah
1 and ... and

Xn is Ah
n THEN Y1 is B

kh
1 and ... and Ym is B

kh
m ] such

that (B
kh
1 , . . . , B

kh
m ) ∈ C(Sh)}.

To allow COR to reduce the initial number for fuzzy
rules, the special element R∅ (which means “do
not care”) is added to each candidate rule set, i.e.,
CR(Sh) = CR(Sh) ∪ R∅. If it is selected, no rules are
used in the corresponding fuzzy input subspace.

2) Selection of the most cooperative fuzzy rule set — This stage
is performed by running a combinatorial search algorithm to
look for the combination RB = {R1 ∈ CR(S1), . . . , Rh ∈
CR(Sh), . . . , R|S+| ∈ CR(S|S+|)} with the best accuracy.
Since the tackled search space is usually large, approximate
search techniques should be used.
An index f(RB) measuring the global quality of the encoded
rule set is considered to evaluate the quality of each solution.
In order to obtain solutions with a high interpretability, the
original function is modified to penalize excessive number of
rules:

f ′(RB) = f(RB) + β · f(RB0) · #RB

|S+| (9)

with β ∈ [0, 1] being a parameter defined by the designer to
regulate the importance of the number of rules, #RB being
the number of rules used in the evaluated solution (i.e., |S+|−
|{Rh ∈ RB such that Rh = R∅}|), and RB0 being the initial
rule base considered by the search algorithm.

Fig. 2. COR algorithm

This search space reduction is performed by two con-
straints:

a) Maximum number of fuzzy input subspaces: The
maximum number of fuzzy input subspaces, and
therefore maximum number of fuzzy rules, is lim-
ited by the positive example sets. The constrains
imposed to constructE+(Ss) (see eq. (7) in Fig. 2)
divides the input space with a crisp grid bounded
by the cross points between labels and, therefore,
each example contributes to generate a single rule.
It is a conservative subspace set selection that
generates the least possible number of rules that
guarantee a whole covering of the examples.
In our problem, since the example data are uni-
formly distributed in the whole input space (as
described in Sect. II), no reduction of the number
of fuzzy input subspaces is done. Nevertheless,
the fact of assigning each example to only one
subspace will involve to reduce the number of
candidate consequents, since the positive example
sets are reduced.

b) Candidate rule set in each subspace: Once the
fuzzy input subspaces are defined, a second search
space reduction is made by constraining the set of
possible consequents for each antecedent combi-
nation, i.e., the candidate rules in each subspace.
Again, we use a restrictive condition to construct
C(Sh) (see eq. (8) in Fig. 2) that generates a low
number of candidate rules.

To illustrate the effect of this search space reduction,
from the example data set proposed in Sect. II, and
using the following number of linguistic terms for each
input/output variable,|A1| = 5, |A2| = 2, |A3| = 5,
|A4| = 2, |B1| = 9, |B2| = 9, our methodology
generates a search space of

∏
Sh∈S+ |C(Sh)| = 9.8e+89

combinations, while the total of possible combinations
(considering the|S+| = 100 input subspaces analyzed)
is (|B1| · |B2|)100 = 7.1e+190.

2) Interpretability issues— The proposed methodology
has also some interesting advantages from the inter-
pretability of the obtained fuzzy knowledge point of
view. This is an important issue in fuzzy control for
mobile robot navigation, as the actions of the robot
are easily understandable and can be communicated to
other modules that supervise the behavior in the control
architecture. Basically, we can remark the two following
aspects:

• Model structure and membership functions keep in-
variable for an excellent interpretability: The COR
methodology is an effort to exploit the accuracy
ability of linguistic FRBSs by exclusively focusing
on the rule base design. In this case, the membership
functions and the model structure keep invariable,
thus resulting in the highest interpretability. Indeed,
instead of improving the accuracy by deriving the



shape of the membership functions or by extend-
ing the model structure (weighted rules, linguistic
hedges, hierarchical knowledge bases, etc.), COR
methodology improves the accuracy inducing coop-
eration among linguistic fuzzy rules.

• Rule base reduction to improve interpretability and
accuracy: A problem when defining a rule base
is that one can not be sure whether the rules are
correctly defined, i.e., without redundant rules or
rules that generate conflicts with others in certain
situations. Moreover, a high number of rules is
difficult to be interpreted, even when a linguistic
fuzzy rule structure is considered.
To face this problem, arule reduction post-
processingis usually developed. When no restriction
to the interpretability is considered, the rules can
be merged [3], thus generating a scatter structure
where each fuzzy rule uses different fuzzy sets for
each variable.
On the other hand, if we want to obtain linguistic
fuzzy rules with high interpretability, a selection
process can be developed to obtain a subset of the
original rule base. However, this approach does not
seem to be appropriate to generate an accurate final
rule set since it is not considered interdependency
between the learning and reduction tasks. That is, it
is sure that after reducing the rule set, the new set
of rules that best cooperate will be different.
The COR methodology achieves the reduction pro-
cess at the same time as the learning one with
the aim of improving the accuracy (the cooperation
among rules and thus the system performance can
be improved by removing rules) and interpretability
(a model with less rules is more interpretable) of
the learned model.
This process is performed by adding the null rule
(R∅) to the candidate rule set corresponding to each
subspace, as shown in the step 1.2. of Fig. 2. In
this way, if such a element is selected for a specific
subspace, this will mean that no rules will take
part for the corresponding antecedent combination.
Notice that the addition ofR∅ in each candidate rule
set slightly increases the search space. Moreover,
the objective function used to guide the search
algorithm (see eq. (9) in Fig. 2) is modified to
penalizing solutions with a high number of rules.

C. COR Methodology with Ant Colony Optimization

Since the search space tackled in step 2. is usually large,
it is necessary to use approximate search techniques. In [5],
accurate linguistic models have been obtained using simulated
annealing. However, since one of our constrains is to deal with
a computational expensive evaluation function, in this paper
the use of ant colony optimization (ACO) [9] is proposed (the
metaheuristic is briefly described in Appendix A). This section
describes the components of the proposed algorithm.

1) Problem Representation for Learning Cooperative Fuzzy
Rules: To apply ACO in the COR methodology, it is conve-
nient to see it as a combinatorial optimization problem with
the capability of being represented on a weighted graph. In this
way, we can face the problem considering a fixed number of
subspaces and interpreting the learning process as the way of
assigning consequents vectors—i.e., labels of the output fuzzy
partitions—to these subspaces with respect to an optimality
criterion (i.e., following the COR methodology).

Therefore, according to Fig. 2, each nodeSh ∈ S+ is
assigned to each candidate consequent(Bkh

1 , . . . , Bkh
m ) ∈

C(Sh) and to the special symbol “don’t care” (R∅) that stands
for absence of rules in such a subspace.

2) Heuristic Information:The heuristic information on the
potential preference of selecting a specific consequent vector,
Bkh , in each antecedent combination (subspace) is determined
as described in Fig. 3.

For each subspace Sh ∈ S+ do:
1) Build the sets E+(Sh) and C(Sh) as shown in Fig. 2.

2) For each Bkh = (Bkh
1 , . . . , Bkh

m ) ∈ C(Sh), make
use of an initialization function based on a covering
criterion to give a heuristic preference degree to each
choice. In this paper, we use the following:

ηhkh = max
el∈E+(Sh)

Min

(
µAh(xl), µ

B
kh
j

(yl)

)
. (10)

3) For each Bkh /∈ C(Sh), make ηhkh = 0.
4) Finally, for the “don’t care” symbol, make the follow-

ing:

ηh,|B1|·...·|Bm|+1 =
1

max
kh∈{1,...,|C(Sh)|}

ηhkh

. (11)

Fig. 3. Heuristic assignment process

3) Pheromone Initialization:The initial pheromone value
of each assignment is obtained as follows:

τ0 =
1
|S+|

∑

Sh∈S+

max
Bkh∈C(Sh)

ηhkh
. (12)

In this way, the initial pheromone will be the mean value of
the path constructed taking the best consequent in each rule
according to the heuristic information (a greedy assignment).

4) Fitness Function:The fitness function will be the said
objective function, defined in eq. (9) in Fig. 2.

5) Ant Colony Optimization Scheme: Best-Worst Ant System
Algorithm: Once the previous components have been defined,
an ACO algorithm has to be given to solve the problem. In
this contribution, the BWAS algorithm [10] is considered. Its
global scheme is shown in Fig. 4.

IV. RESULTS

The learned controller has been tested in four simulated
environments using the Nomad 200 simulation software. These
environments include very different situations that the robot
usually faces during navigation: straight walls of different



1) Give an initial pheromone value, τ0, to each edge.
2) While (termination condition is not satisfied) do:

a) Perform the track of each ant by the solution
construction process .

b) Apply the pheromone evaporation mecha-
nism .

c) Apply the local search process on the current-
best solution.

d) Update Sglobal best and Scurrent worst.
e) Apply the Best-Worst pheromone trail up-

date rule .
f) Apply the pheromone trail mutation .
g) If (stuck condition is satisfied) then apply

restart .

Fig. 4. BWAS algorithm

lengths, followed and/or preceded of a number of concave and
convex corners, ... thus covering a wide range of contours to
follow and truly defining very complex test environments. It
is important to remark that these environments have not been
used during training. The training set is only composed of
a list of examples that have been chosen covering the input
space with an adequate precision. These conditions warrantee
that the quality of the learned behavior does not depend on the
environment, and also that the robot will be capable to face
any situation.

Figure 5 shows the robot path along one of the environments
(namedD) used for testing. The robot trajectory is represented
by circular marks. A higher concentration of marks indicates
lower velocity. The learned controller has 77 linguistic rules
and has been learned in less than 20 minutes. If for any
situation no rule is fired, then a null linear acceleration and
angular velocity are selected. The maximum velocity the robot
can reach is 61 cm/s, and the reference distance at which the
robot should follow the right wall is 51 cm. Ten tests have
been done for each one of the analyzed environments. The
average values measured for some parameters that reflect the
controller performance are shown in Table I. These parameters
are the average distance to the right wall (the wall that is being
followed), the average linear velocity, the time spent by the
robot along the path, and the average velocity change. The
latter parameter measures the change in the linear velocity
between two consecutive cycles, reflecting the smoothness of
the behavior.

In order to show the quality of the controller we are going
to describe in detail the path of the robot in environmentD
(Fig. 5). This environment is quite complex, with four concave
corners and six convex corners in a circuit of a length of 59
meters. Convex corners are truly difficult situations, because
the robot’s sensors may cease to correctly detect the wall
at some given moments, even though some of them may
occasionally detect it. The controller must also significantly
reduce velocity at corners. In spite of these difficulties, the
obtained average velocity has been quite high, and the distance
at which the robot should follow the wall is near the desired
reference distance. The difference between both distances is

Concave

corner

Convex

corner

Movement

direction

1 meter

Fig. 5. Path of the robot along environmentD.

caused by the high number of corners, in which the orientation
of the robot is very bad (at concave corners the robot is
detecting two perpendicular walls, and sometimes at convex
corners it detects no wall), and a fast turning is prioritized
over a correct distance.

TABLE I

AVERAGE VALUES OF SOME PARAMETERS(77 LINGUISTIC RULES)

Env. RD (cm) Velocity (cm/s) Vel. change (cm/s) Time (s)

A 65 55 5.73 62
B 57 52 5.75 103
C 55 50 4.10 84
D 55 54 4.27 112

For evaluating the obtained controller, a comparison with
another wall-following controller designed using genetic al-
gorithms [3] has been done. Strict comparison of the results
obtained with other control systems described in the literature
is not possible, because it is not viable to propose a standard
test bankwhich would allow us to compare controllers in
similar environments, and to consider the different mechanical
and dynamic features of the different robots. The design in
[3] comprised two stages: learning of the data base and a
general rule base (Pittsburgh approach), and reduction of the
generated rule base merging adjacent membership functions.
This reduction provokes a loss in the interpretability of the
final knowledge base since a different fuzzy set is built
for each fuzzy rule, thus losing the legibility provided by
the use of linguistic variables with global semantics. That
controller has 46 fuzzy rules, and the average values of some
parameters for the test environments are presented in Table II.
The time employed to learn the system is very high (several
hours) compared with less than 20 minutes for the controller
presented in this paper.

The controller described in this paper has a high number



TABLE II

AVERAGE VALUES OF SOME PARAMETERS FOR THE SYSTEM DESCRIBED

IN [3] (46 FUZZY RULES)

Env. RD (cm) Velocity (cm/s) Vel. change (cm/s) Time (s)

A 59 46 8.69 72
B 54 43 9.70 120
C 54 36 7.75 114
D 54 46 7.18 127

of rules (77 vs. 46), but clearly improves the results of the
controller presented in [3]. The average velocity is higher in
all the environments, reducing the time spent by the robot
in the circuit. The average right-hand distance is very similar
in both controllers and, finally, the average velocity change
is drastically reduced in the present controller, which reflects
the quality of the obtained behavior as compared with [3].
On the other hand, the interpretability of the obtained rules is
very high, as opposed to [3]. This makes easier to understand
the actions taken by the robot. The controller selects a strong
braking when, due to the orientation and velocity, the robot is
going to be in the next iteration very close to a wall, or quite far
from the wall it must follow. A medium or hard acceleration
is selected when the following position of the robot is going
to have a good right-hand distance. In resume, the objective
is firstly to place the robot to an adequate distance from the
right-hand wall, then to select a high velocity if possible, and
finally to orient it parallel to the wall.

V. CONCLUSIONS

We have presented the design of a fuzzy controller for the
wall-following behavior in mobile robotics using the COR
methodology. The main advantages of the proposed approach
are the easiness in the design, the speed in the obtaining of
the knowledge base, the high degree of interpretability of that
knowledge base and, finally, that the quality of the learned
behavior does not depend on the training set.

The controller has been tested in a number of simulated
environments showing good results in the average values
of some parameters that reflect the quality of the behavior.
The system has also been compared with a previous design
based on genetic algorithms, increasing the quality and the
interpretability of it.

APPENDIX A: A NT COLONY OPTIMIZATION

ACO algorithms constitute a new family of global search
bio-inspired algorithms that has been recently proposed. Since
the first proposal, the ant system algorithm [9]—applied to the
traveling salesman problem—, numerous models have been
developed to solve a wide set of optimization problems.

ACO algorithms draw inspiration from the social behavior
of ants to provide food to the colony. In the food search
process, ants deposit a substance calledpheromone. Ants
have the ability of smelling the pheromone. When an ant is
located at a branch, it decides to take the path according to
a probability defined by the amount of pheromone existing in

each trail. In this way, the depositions of pheromone terminate
in constructing a path between the nest and the food that can
be followed by new ants. The shortest paths are finally the
more frequently visited ones and, therefore, the pheromone
concentration is higher on them.

The basic operation mode of ACO algorithms is as fol-
lows [9]: at each iteration, a population of a specific number
of ants progressively construct different tracks on a graph rep-
resenting the problem instance (i.e., solutions to the problem)
according to aprobabilistic transition rulethat depends on the
available information (heuristic information and pheromone
trails). After that, the pheromone trails are updated by firstly
decreasing them by some constant factor (corresponding to
the evaporation of the pheromone) and then reinforcing the
attributes of the constructed solutions considering their quality.
This task is developed by theglobal pheromone trail update
rule. Several extensions to this basic operation mode (different
transition and update rules, new components, local search...)
have been proposed.

ACKNOWLEDGMENT

This work was supported in part by the Spanish Ministry
of Science and Technology under grants no. TIC2002-04036-
C05-01, TIC2003-00877 and TIC2003-09400-C04-03. Part of
this research has been developed during a research stay of
the first author at the Department of Computer Science and
Artificial Intelligence of the University of Granada that was
supported by theDirección Xeral de I+D, Xunta de Galicia.

REFERENCES

[1] A. Saffiotti, “The uses of fuzzy logic in autonomous robot navigation,”
Soft Computing, vol. 1, no. 4, pp. 180–197, 1997.

[2] M. Mucientes, R. Iglesias, C. V. Regueiro, A. Bugarı́n, and S. Barro,
“A fuzzy temporal rule-based velocity controller for mobile robotics,”
Fuzzy Sets Sys., vol. 134, pp. 83–99, 2003.

[3] M. Mucientes, D. L. Moreno, C. V. Regueiro, A. Bugarı́n, and S. Barro,
“Design of a fuzzy controller for the wall-following behavior in mobile
robotics with evolutionary algorithms,” inProc. Int. Conf. of Informa-
tion Processing and Management of Uncertainty in Knowledge-based
Systems (IPMU’2004), 2004. Accepted.

[4] D. Floreano and F. Mondada, “Evolutionary neurocontrollers for
autonomous mobile robots,”Neural Networks, vol. 11, pp. 1461–1478,
1998.

[5] J. Casillas, O. Cord́on, and F. Herrera, “COR: A methodology to
improve ad hoc data-driven linguistic rule learning methods by inducing
cooperation among rules,”IEEE Trans. Sys., Man, and Cybern.—Part
B: Cybern., vol. 32, no. 4, pp. 526–537, 2002.

[6] J. Casillas, O. Cord́on, and F. Herrera, “COR methodology: a simple
way to obtain linguistic fuzzy models with good interpretability and
accuracy,” in Accuracy improvements in linguistic fuzzy modeling,
J. Casillas, O. Cord́on, F. Herrera, and L. Magdalena, Eds. Springer,
Heidelberg, Germany, 2003.

[7] L.-X. Wang and J.M. Mendel, “Generating fuzzy rules by learning from
examples,”IEEE Trans. Sys., Man, and Cyber., vol. 22, no. 6, pp. 1414–
1427, 1992.

[8] P. Thrift, “Fuzzy logic synthesis with genetic algorithms,” inProc. 4th
Int. Conf. on Genetic Algorithms, R.K. Belew and L.B. Booker, Eds., San
Mateo, CA, USA, 1991, pp. 509–513, Morgan Kaufmann Publishers.

[9] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: optimization
by a colony of cooperating agents,”IEEE Trans. Sys., Man, and
Cybern.—Part B: Cybern., vol. 26, no. 1, pp. 29–41, 1996.

[10] O. Cord́on, F. Herrera, I. Ferńandez de Viana, and L. Moreno, “A
new ACO model integrating evolutionary computation concepts: the
best-worst ant system,” inProc. 2nd International Workshop on Ant
Algorithms, Brussels, Belgium, 2000, pp. 22–29.


